120-/128-OUTPUT TFT-LCD GATE DRIVER

The μ PD16650 is a TFT-LCD gate driver. Provided with a level shift circuit at the logic input, this chip can output a high gate scan voltage for a CMOS-level input. The μ PD16650 has an output change-over function for switching from the 120 -output mode to the 128 -output mode, and vice versa, thereby supporting the VGA, SVGA, and XGA panels. Its output enable function $(\overline{\mathrm{OE}})$ enables installing the driver on either side.

FEATURES

- Output with high dielectric strength (on/off range: Vdd - Vee1 = 40 Vmax.)
- Built-in shift direction change-over function
- Shiftable negative supply voltage ($\mathrm{V}_{\mathrm{EE} 1}$) level (shift range: $\left|\mathrm{VEE}_{\mathrm{EE}}-\mathrm{V}_{\mathrm{EE} 2}\right|=10 \mathrm{~V}$)
- Two acceptable CMOS input levels (3.3 and 5 V)
- Output enable function
- MC-selectable output count (MC = high: 120-output mode)
(MC = low : 128-output mode)
- Slim TCP

ORDERING INFORMATION

Part number	Package
$\mu \mathrm{PD} 16650 \mathrm{~N}-\times \times \times$	TCP (TAB package)
$\mu \mathrm{PD} 16650 \mathrm{~N}-\times \times \times$	Standard TCP (OL pitch $=220 \mu \mathrm{~m})$

Remark When ordering, the customer can specify the external form of the TCP. Call one of our sales representatives for more information.

BLOCK DIAGRAM

Remark LS (level shifter): Interfaces the 5 V CMOS level with the $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {EE2 }}$ level.

PIN CONNECTION DIAGRAM (μ PD16650N- $\times \times \times$)

Caution The Vcha pin should be connected to the Vdd or VEE2 pin on the TCP. (This method eliminates the necessity to provide the Vсна input pin on the TCP, resulting in a reduction in the number of required input pins.)

PIN DESCRIPTION

Pin symbol	Pin name	Description of function
X_{1} to X_{128}	Driver output	Output scan signals to drive the TFT-LCD gate electrodes. The output changes when the shift clock ϕ_{x} rises. The amplitude of the driver output is $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE} 1}$. See the timing charts shown later for details of how to switch between the 120output mode and 128-output mode.
MC	Output count change-over input	Receives a signal that changes the number of outputs. For the 120-output mode, this pin must be supplied with a high level (Vcc). For the 128-output mode, it must be supplied with a low level (Vss or Veez).
V CHA	Logic voltage change-over input	Must be supplied with the $\mathrm{V}_{\text {EE2 }}$ level when the logic supply voltage is 3.3 V , and with the $V_{D D}$ level when the logic supply voltage is 5.0 V .
STVR STVL	Start pulse input/output	Receives an input to the internal shift register. The input data is loaded on the shift register at the positive-going edge of the shift clock ϕ_{x}. The scan signals are output from X_{1} to X_{128}. The input/output level is the CMOS level.
		Outputs a start pulse to the next stage if a cascade connection is used. In the 120-output mode, the start pulse is output at the negative-going edge of the 120 th shift clock ϕ_{x} pulse, and cleared at the negative-going edge of the 121 st pulse. In the 128-output mode, the start pulse is output at the negative-going edge of the 128 th shift clock ϕ_{x} pulse, and cleared at the negative-going edge of the 129th pulse.
R/L̄	Shift direction change-over input	$\begin{aligned} & R / L=\text { high (for shift right): }: S T V R \rightarrow X_{1} \rightarrow X_{128} \rightarrow \text { STVL } \\ & R / L=\text { low (for shift left) }: S T V L \rightarrow X_{128} \rightarrow X_{1} \rightarrow \text { STVR } \end{aligned}$
ϕ_{x}	Shift clock input	Receives a shift clock pulse for the internal shift register. A shift occurs at the positive-going edge of the shift clock pulse.
$\overline{\mathrm{OE}}$	Output enable input	When this pin is at a high level, the driver output is fixed at a low level. The shift register is not cleared, however. The internal logic circuit operates even when the pin is at a high level. The signal supplied to this pin is not synchronized with the clock.
VDD	Driver positive supply voltage	Receives the supply voltage for both the logic circuit and driver.
V cc	Reference voltage	$5 \pm 0.5 \mathrm{~V} / 3.3 \pm 0.3 \mathrm{~V}$ Reference voltage for the LS1 and LS2 level shifters.
Vss	Ground	Must be connected to the system ground.
VEE1	Driver negative supply voltage	$\mathrm{V}_{\mathrm{EE} 1}$ (for the driver)
VEE2	Driver negative supply voltage	$\mathrm{V}_{\text {eE2 }}$ (for the logic circuit)

CAUTIONS FOR USE

1) Power-on sequence

To prevent latch-up disruption, the power must be switched on in the order:
VCC \rightarrow VEE1 \rightarrow VEE2 \rightarrow VDD \rightarrow Logic input
When witching off, reverse the order. This order must be observed also during transition.
2) Insertion of bypass capacitors

The internal logic circuit operates at a high voltage. To make V_{IH} and V_{IL} immune to noise, use capacitors of $0.1 \mu \mathrm{~F}$ or so between supply voltages as shown below.

3) Negative voltage level shift

If it is necessary to shift the level of a negative supply voltage, shift the $\mathrm{V}_{\mathrm{EE} 1}$ (driver supply voltage) level. The shift should be limited to within: $\mathrm{V}_{\text {EE } 2} \leq \mathrm{V}_{\text {EE }} \leq \mathrm{V}_{\mathrm{EE} 2}+10 \mathrm{~V}$
Note that shifting the $\mathrm{V}_{\mathrm{EE} 1}$ level results in the ON-state output resistance and output fall time ratings being changed.
4) Handling the VEE1 and VEE2 driver negative supply voltage pins

For applications in which a negative supply voltage level is not shifted, connect the VEE1 pin (driver supply voltage) to the Veez pin (logic supply voltage) outside the TCP. Fix all unused input pins to the Veez level.

TIMING CHART (MC = Vss, 128-OUTPUT MODE, AND R/L=Vcc)

Caution Do not change all outputs simultaneously, because such a sequence may result in malfunction.

TIMING CHART (MC = Vcc, 120-OUTPUT MODE, AND R/ $\bar{L}=\mathrm{Vcc}$)

Cautions 1. Do not change all outputs simultaneously, because such a sequence may result in malfunction.
2. The output sequence in the 120 -output mode is as follows: STVR (STVL) $\rightarrow \mathbf{X}_{1} \rightarrow \mathbf{X}_{2} \ldots \mathbf{X}_{60} \rightarrow \mathbf{X}_{69} \ldots \mathbf{X}_{127} \rightarrow \mathbf{X}_{128} \rightarrow$ STVL (STVR)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	Rated value	Unit
Supply voltage	VdD		-0.5 to +28	V
Supply voltage	Vcc		-0.5 to +7	V
Supply voltage	$\begin{aligned} & V_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE} 1} \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE} 2} \end{aligned}$		-0.5 to +42	V
Supply voltage	$\mathrm{V}_{\text {EE1, }} \mathrm{V}_{\text {EE2 }}$		-22 to +0.5	V
Input voltage	VI		$\mathrm{V}_{\text {EE2 } 2}-0.5$ to $\mathrm{V}_{\text {do2 }}+0.5$	V
Input current	1		± 10	mA
Output current	Io		± 10	mA
Operating temperature range	T_{A}		-20 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$.		-55 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING RANGES ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0}{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Vss $=\mathbf{0}$ V)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply voltage	VDD		16		25	V
Supply voltage	VEE1		$\mathrm{V}_{\text {EE } 2}$		$\mathrm{V}_{\text {EE } 2}+10$	V
Supply voltage	$V_{\text {EE2 }}$		-20		0	V
Supply voltage	$\begin{aligned} & V_{D D}-V_{\text {EE1 }} \\ & V_{D D}-V_{\text {EE2 }} \end{aligned}$		20		40	V
Supply voltage	Vcc	For the 3.3 V logic input	3.0	3.3	3.6	V
Supply voltage	V cc	For the 5.0 V logic input	4.5	5.0	5.5	V

Remark When shifting the level of $\mathrm{V}_{\mathrm{EE} 1}$ (driver supply voltage), satisfy the condition:
$\mathrm{V}_{\text {EE } 2} \leq \mathrm{V}_{\text {EE }} \leq \mathrm{V}_{\text {EE }}+10 \mathrm{~V}$
Note that shifting the $\mathrm{V}_{\mathrm{EE} 1}$ level results in the ON-state output resistance and output fall time ratings being changed.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{A}}=-20{ }^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}, \mathrm{Vdd}=20 \mathrm{~V}, \mathrm{VEE}_{\mathrm{V}}=\mathrm{VEE} 2=-20 \mathrm{~V}, \mathrm{Vcc}=3.3 \pm 0.3 \mathrm{~V}$ or $5.0 \pm 0.5 \mathrm{~V}$, $\left.\mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Input high voltage	V_{H}	Other than $\mathrm{V}_{\text {сна }}$	0.7 V cc		Vcc	V
Input low voltage	VIL	Other than $\mathrm{V}_{\text {cha }}$	$\mathrm{V}_{\text {EE2 }}$		0.3Vcc	V
Output high voltage	Vон	STVR(STVL), $\mathrm{loh}=-40 \mu \mathrm{~A}$	V cc - 0.4		V co	V
Output low voltage	Vol	STVR(STVL), lol $=40 \mu \mathrm{~A}$	Vss		Vss +0.4	V
Output high current	Іхон	$\mathrm{X}_{\mathrm{n}}, \mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$			-1.5	mA
Output low current	Ixol	$\mathrm{X}_{\mathrm{n}}, \mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\text {EE } 1}+1 \mathrm{~V}$	1.5			mA
ON-state output resistance	Ron1	$\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\text {EE } 1}+1 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$			660	Ω
Input leakage current	IIL	$\mathrm{V}_{1}=0 \mathrm{~V}, 5.0 \mathrm{~V}$, or 3.3 V			± 1.0	$\mu \mathrm{A}$
Dynamic drain current	Ido	$\mathrm{V}_{\mathrm{DD}}, \mathrm{f} \phi_{\mathrm{x}}=31.5 \mathrm{kHz}$		0.5	1.0	mA
	IEE	$\mathrm{V}_{\text {EE1 } 12, ~} \mathrm{f} \phi_{\mathrm{x}}=31.5 \mathrm{kHz}$		-0.5	-1.0	mA
	Icc	$\mathrm{Vcc}, \mathrm{f} \phi_{\mathrm{x}}=31.5 \mathrm{kHz}$		50	100	$\mu \mathrm{A}$

SWITCHING CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}, \mathrm{Vdd}=20 \mathrm{~V}, \mathrm{VeE}_{\mathrm{D}}=\mathrm{VEE} 2=-20 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Vcc}=3.3 \pm 0.3 \mathrm{~V}$ or $\left.5.0 \pm 0.5 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
STVR and STVL output delay	tPHL1	$\begin{aligned} & \mathrm{CL}=20 \mathrm{pF} \\ & \mathrm{CLK} \rightarrow \mathrm{STVR}(\mathrm{STVL}) \end{aligned}$			600	ns
	tpLH1				600	ns
Driver output delay	tpHL2	$\begin{aligned} & \mathrm{CL}=220 \mathrm{pF} \\ & \mathrm{CLK} \rightarrow \mathrm{X}_{\mathrm{n}} \end{aligned}$			700	ns
	tpLH2				700	ns
	td1	$\mathrm{CL}=220 \mathrm{pF}, \overline{\mathrm{OE}}: \mathrm{L} \rightarrow \mathrm{H}$			700	ns
	td2	$\mathrm{CL}=220 \mathrm{pF}, \overline{\mathrm{OE}}: \mathrm{H} \rightarrow \mathrm{L}$			700	ns
Output rise time	tтhL	$\mathrm{CL}=220 \mathrm{pF}$			300	ns
Output fall time	ttLH	$\mathrm{CL}=220 \mathrm{pF}$			300	ns
Input capacitance	Cl_{1}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15	pF
Maximum clock frequency	${ }^{\dagger} \phi_{x}$	For cascade connection	100			kHz

TIMING REQUIREMENTS

$\left(\mathrm{TA}_{\mathrm{A}}=-20^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}, \mathrm{Vdd}=20 \mathrm{~V}, \mathrm{VeE}_{\mathrm{V}}=\mathrm{VEE} 2=-20 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Vcc}=3.3 \pm 0.3 \mathrm{~V}$ or $\left.5.0 \pm 0.5 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Clock pulse high width	PW $\phi_{x}(\mathrm{H})$	Duty $=50 \%$	500			ns
Clock pulse low width	PWW $\phi_{x}(\mathrm{~L})$	Duty $=50 \%$	500			ns
Data setup time	tsetup	STVR(STVL) $\uparrow \rightarrow$ CLK \uparrow	100			ns
Data hold time	thold	CLK $\uparrow \rightarrow$ STVR(STVL) \downarrow	100			ns

Remark The logic input rise time (tr) and fall time (t_{f}) must be within 20 ns (between 10% and 90% of the peak amplitude of the input).

SWITCHING CHARACTERISTIC WAVEFORM (R/L = HIGH)

RECOMMENDED MOUNTING CONDITIONS

When mounting this product, please make sure that the following recommended conditions are satisfied.
For packaging methods and conditions other than those recommended below, please contact NEC sales personnel.
μ PD16650N- $\times \times \times$

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to $350{ }^{\circ} \mathrm{C}$; heating for 2 to 3 seconds; pressure 100 g (per solder)
	ACF (Sheet-shape bonding agent)	Temporary bonding 70 to $100{ }^{\circ} \mathrm{C}$; pressure 3 to $8 \mathrm{~kg} / \mathrm{cm}^{2}$; time 3 to 5 secs. Real bonding 165 to $180{ }^{\circ} \mathrm{C}$; pressure 25 to $45 \mathrm{~kg} / \mathrm{cm}^{2}$; time 30 to 40 secs. (when using the anisotropic conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd.)

Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more packaging methods at a time.

Reference

NEC Semiconductor Device Reliability/Quality Control System (IEI-1212)
Quality Grades to NEC's Semiconductor Devices (IEI-1209)

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.

